
User’s guide for OSLOM (version 2.5)

October 2, 2013

Thanks for downloading the code which implements OSLOM.

1 Compiling

The program comes along with a file called compile all.sh.
Type
./compile all.sh
from a Unix (MAC) terminal. If you are using Windows, you could still run the program

by installing MinGW (Minimalist GNU for Windows, http://www.mingw.org/). If you
see something like ./compile all.sh: Permission denied, type:

chmod 744 compile all.sh
which makes the script executable and try again with:
./compile all.sh.

2 What you get

After compiling, you should see a number of binary files. oslom undir and oslom dir
implement OSLOM for undirected and directed networks. The option -f introduces the
name of the file where the network is stored. Try:

./oslom undir -f example.dat -uw
and when the program is done (it takes about 15 seconds on a laptop computer), type:
./pajek write undir example.dat
Now look at the folder example.dat oslo files. You should see a few files, described

in the coming subsections.

2.1 The modules

The most important files are tp and tp1 (tp is also copied in the main folder, for your
convenience).

1



In tp you find the set of (overlapping) modules at the lowest hierarchical level. The
file content looks like this:

#module 0 size: 18 bs: 5.69337e−101
7 10 13 17 18 22 28 31 33 37 38 41 44 45 47 50 51 56
The line starting with # says that the module with id 0 has 18 nodes and score of 5.69337e−101, which

is an estimation of the probability of finding a module like this one in a random network (very very low in

this case). To be specific, this is in fact an upper bound of the real significance. In any case, the program

stops when the score is below the p−value (note that it can be much much lower). The second line gives

the nodes in the module.

You should also see something like:
#module 6 size: 29 bs: 0.756234
1 2 3 4 9 15 21 23 27 30 34 43 46 48 49 53 60 63 68 70 72 73 74 78 79 81 83 93 1000
The score is higher than the p−value because the module contains a node which is non-significant.

Running the program with option -singlet will tell that node 1000 has not been assigned to any module,

i.e. it forms a module on its own. In other words, it is a homeless node. We recommend to use this option

only if you are interested in detecting noisy nodes.

tp1 is the analogous for the first hierarchical level. In our example, this is all, there
are no other hierarchical levels for the network stored in example.dat. In general, if there
are further levels, the program will produce other files: tp2, tp3, etc..

2.2 The pajek files

Now open the file called pajek file 0.net. The format of this file is the usual pajek format
and you can use Pajek (http://vlado.fmf.uni-lj.si/pub/networks/pajek/) and/or
Gephi (http://gephi.org/) to visualize the network. Each module of the lowest level
has a different color. Overlapping nodes are black, homeless nodes are white. The only
difference with pajek file 1.net is that it has different colors to highlight higher level
modules.

If the visualization looks too small, try:
./pajek write undir example.dat 2.5
You would get another pajek file which would produce a picture twice and a half times

bigger. Type the command again, to have different visualizations (colors and positions are
chosen through a stochastic algorithm).

N. B.: All the output files are stored in the directory called [network file] oslo files.
If the directory is not empty it will be cleared, so be careful if you want to save some
previous output files.

2



2.3 What else?

This is not fundamental, so if you are impatient, skip this and go to Section 3.1.

Here is a list of the other output files:

1. net1 contains the edge list of the network of communities found at the lowest hier-
archical level. For instance,

0 10 5

means that there are five links between node 0 and node 10. The labels 0 and 10
are the module ids of file tp. Likewise, file net2 stores the network of communities
found at the second hierarchical level, whose labels are those used for the modules
in file tp1, etc.. In the case of weighted networks, you would see four numbers like
these:

0 10 15.76 5

which means that there are five links between node 0 and 10 and the sum of the
weights of these links is 15.76.

2. short tp1 (short tp2) gives the modules of the community network net1 (net2,
net3, ...) using its labels, which refer to the ids of the modules listed in tp (tp1,
tp2, ...).

3. partitions level 0(1) contains the pruned modules the program found at the end
of each run.

4. statistics level 0(1) contains some basic statistics of the modules found for each
hierarchical level.

5. pos 0 is written by pajek write undir. It gives the position of the nodes of ex-
ample.dat, the format is x y node. pos 1 is the analogous for the nodes in net1,
pos 2 for the nodes in net2, etc..

3 OSLOM’s Options

3.1 Basic Options

1. Directed vs Undirected. First of all, you need to choose between

./oslom undir

and

./oslom dir.

3



As you can easily guess, the former is for the undirected networks, the latter for
directed ones. The same holds for pajek write undir and pajek write dir. If you
have a directed network, the format of the input file is node1 node2, meaning that
there is a link from node1 to node2. Self loops and repetitions are ignored in both
cases.

2. -uw (-w) is the only mandatory flag.

Option -uw is for unweighted networks, or better it is for weighted networks where
considering weights as multiple links. This means that it is possible to use a format
for the network file like:

node1 node2

or

node1 node2 m12

but m12 must be an integer number! It tells how many links are between the two
nodes. In the null model, these links are randomly rewired along with all the links
of the network.

Option -w is to choose the weighted version of the algorithm. This selects a different
null model where the strength of a node is shared between its neighbors. The input
file can be:

node1 node2 w12

or

node1 node2 w12 m12

where w12 is the weight between node1 and node2. If there are m12 multiple links
between the two nodes, w12 must be the sum of the weights on those links.

About the labels of the nodes, they must be non-negative integer numbers, but they
do not have to be consecutive and can start from any number.

3.2 Other Options

1. -r m sets equal to m the number of runs for the first hierarchical level. The default
value is 10. This value depends on your patience. The bigger m, the more accurate
the results. We are working to let the program choose the optimal number of runs
according to the convergence of the results. The option -r 0 has to be employed
when OSLOM starts from a partition found by other algorithms.

2. -hr m sets the number of runs for higher hierarchical level equal to m. The default
value is 50 (the method should be faster since the aggregated network is usually much
smaller). If you are not interested in hierarchies set -hr 0 and the method will stop
after finding the lowest level partition.

4



3. -seed m. The program is not deterministic, so it needs a seed for its random number
generator. Using this option it will be set equal to m, otherwise the seed will be set
reading the file time seed.dat, which will be updated afterwards.

4. -hint filename: reads a file with a partition previously found by another algorithm.
The file has to be formatted like tp (lines starting with # are skipped, so they are
optional): it simply has to contain the modules separated by an end of line. All the
modules read from the file will be cleaned up by the algorithm, which would retain
only the significant ones. Then, the program would look for submodules and cleanup
all of them. The outcoming clusters will be written in file partitions level 0, to-
gether with the modules found during the cluster search (unless you set -r 0). This
option can be used only for the first hierarchical level.

5. -load filename: reads a file with a partition previously found by OSLOM. The file
must have the format of the output file tp (see Section 2.1). In particular, this option
can be useful if you want to parallelize the program. You have to run OSLOM in
different folders with different seeds (option -seed).

6. -t l sets the p−value equal to l. The default value is 0.10. Interestingly, if you
increase this value you get more modules. The reason is that submodules are more
easily considered significant.

7. -singlet: singletons. The program usually finds a number of nodes which are not
assigned to any module. By default, the program assigns “homeless” nodes to a
module according to the score of the node with respect to the existing modules:
the module with best score will “accept” the node (this only applies to the lowest
hierarchical level). Setting this flag, instead, homeless nodes are not assigned to any
cluster. Also, a file called tp without singletons will be written with all the nodes
assigned (as by default). This option should be used if you are interested in filtering
nosily nodes (typically low-degree nodes).

8. -cp l sets the coverage parameter equal to l. This parameter is a kind of resolution
parameter: it is used to decide between taking some modules or their union. Default
value is 0.5. Bigger value leads to bigger clusters. l must be in the interval (0, 1).

9. -fast: this flag is to have fast results. It is equivalent to set -r 1 -hr 1, so it enables
the fastest possible execution of the program.

10. -infomap r: the program will call another program (infomap) and will apply
OSLOM’s cleanup procedure to the modules found by it. r is the number of times
infomap will be called, good values are between 1 and 10.

5



11. -copra r, -louvain r are similar flags for other programs. They can be used si-
multaneously. The general idea is that the more programs are used, the better the
exploration of possible modules will be, but of course more time is needed.

Examples:

./oslom undir -f example.dat -uw -infomap 3 -copra 2 -louvain 1 -r 2
This will run oslom on example.dat using our method to explore the graph (two runs)

and the outputs of infomap after 3 iterations, of copra after 2 and of louvain as initial
conditions [Oslom cleans-up afterwards the found modules]. The final output is formed by
the best modules found with all these methods.

./oslom undir -f example.dat -uw -infomap 1 -r 0 -hr 0
OSLOM runs on example.dat using as initial modules the output of infomap. Since

r = 0 and hr = 0, our module search technique is not applied.

N. B.: All the external programs have been distributed because they are free. However,
if you use one or more of them for your research, please cite the paper where the method
is described.

4 References

If you used this program for your research, please cite this paper: (to appear)

In addition, please cite the following papers if you used -copra, -louvain or -infomap.

1. if you used -copra, please cite: Steve Gregory, New J. Phys. 12, 103018 (2010).

2. if you used -infomap, please cite: M. Rosvall and C. T. Bergstrom, Proc. Natl.
Acad. Sci. U.S.A 105, 1118 (2008).

3. if you used -louvain, please cite: V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, J. Stat. Mech. P10008 (2008).

Further information and the source codes can be found in the following urls:

1. copra: http://www.cs.bris.ac.uk/∼steve/networks/software/copra.html

2. infomap: http://www.tp.umu.se/∼rosvall/code.html

3. louvain: http://sites.google.com/site/findcommunities/

6


